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• A bit about me and my journey

• A brief introduction to collective dynamics, and different modelling 
approaches, including when each one is more appropriate

• Some examples of problems I have worked on in this context

• A short look at other (applied maths) problems I have worked on (and maybe 
some I haven’t but would like to!)

What I’ll talk about today…



• Originally from Porto (Portugal)

• Moved to Coimbra for an Undergraduate degree in 
Mathematics, and MSc in Applied Analysis and 
Computational Mathematics.

• Moved to Imperial College London (UK) in 2012 for 
a PhD in Applied Mathematics and Mathematical 
Physics (and postdocs).

• Moved to the University of Warwick in 2018 where 
now I am an Associate Professor.

A bit about me

Picture: me giving a talk at a conference 
in the Netherlands earlier this year



My job is divided into a lot of parts…

• The part you see: Teaching undergraduate and MSc students 
• Includes tutorials and “normal” lectures, exam boards, sometimes teaching in other departments.

• what I was the most afraid of, but the most fun!

• The “main” part: Research in Applied Mathematics
• writing papers and going to conferences to give talks,

• supervising MSc and PhD students,

• writing grant proposals,

• reviewing papers.

• Other university things.
• Being in committees, helping with open days, attending graduation ceremonies, organising events, …

• Mentoring and tutoring students and younger researchers (one of my favourite parts!)

A bit about being a lecturer



A bit about my research (in general)

I work in all sorts of areas of Applied Mathematics, but my main interests include:

• Control theory (study how to manipulate systems to achieve some desired outcome)
• Can talk a bit about this at the end, if there is time.

• Real-world applications (physical, life, and social sciences)
• I will show you a couple of these today.

• Modelling with differential equations (ODEs, SDEs, PDEs), recently also using networks
• Most of today will be about ODEs and SDEs.

• In some cases, I also solve inverse problems, in particular parameter estimation from 
real-world data.



Collective dynamics
Interacting particle systems are ubiquitous in the real-world, appearing in several 
application areas

• Biology and Life Sciences 
• Flocks of birds, schools of fish, herds od 

sheep, …
• Cell dynamics

• Social Sciences
• crowd dynamics
• opinion dynamics, ...

• Physics and Engineering 
• Drones, robots, …
• Molecular dynamics
• Movement of galaxies

• Many other examples



Modelling approaches

Depending on the application, or what we want to be able to say from our models, we 
can take different approaches to model collective behaviour.

Some examples I will talk about include:

• One-to-one interactions (agent-based models)
• How (and when) pairs of individuals interact matters

• Individual interactions within a group (interacting particle systems)
• All pairs of individuals interact in a “similar” way, and it doesn’t matter which specific pair is 

interacting

• Modelling the group as a whole (macroscopic models)
• We care mostly about the whole group behaviour, rather than individual interactions.

So… How do these models look like?



Agent-based models

These models are used when we want to describe interactions accurately, usually resulting 
from a rational behaviour point of view. Who each agent interacts with matters.

Example 1: Two pedestrians interacting to avoid collisions
In the figure, pedestrians at positions 𝑥𝑖 , 𝑥𝑗 with velocity
𝑣𝑖 , 𝑣𝑗 see each other and update their path to avoid a 
collision.

Example 2: Two people interact and change their opinion based on their conversation  
(with more detail later)

Figure from Bailo, Carrillo, and Degond (2018), “Pedestrian models based on rational behaviour”, in Crowd Dynamics, Vol. 1



Agent-based models

They are based on one-to one interactions, usually modelled by a Markov process (or 
Markov chain). At each time step, we

1. Select what individual to consider

2. Select who they will interact with

3. Update the state of one (or both) individuals according to some rule.

e.g. in opinion dynamics, after choosing individual 𝑖, who has opinion 𝑥𝑖, they will choose to 
interact with person 𝑗, with opinion 𝑥𝑗, with probability  𝑝𝑖𝑗. After interacting, they will update 

their opinion by averaging their opinions out if their opinions are close enough, e.g., if 

𝑑 𝑥𝑖 , 𝑥𝑗 ≤ 𝑅.



Interacting particle systems

These models are more appropriate for a population of agents of the “same type”. This 
means that everyone behaves in the same way and interacts at the same rate.

Example 1: Cell dynamics: one (or multiple) population(s) of cells interact in some 
experimental environment. The cell(s) can interact via attraction or repulsion, or other 
interesting dynamics.

Example 2: Birds flying in a group, with interactions via 
what is visible to them. Can exhibit very interesting 
behaviour, such as flocking, or milling.



Interacting particle systems

IPS are systems of (ordinary or stochastic) differential equations which usually include an 
“environment” term, and an interaction term. If they are an SDE, they also include noise:

𝑑𝑋𝑖(𝑡)

𝑑𝑡
= 𝑉 𝑋𝑖(𝑡) +

1

𝑁


𝑗≠𝑖 

𝑁

𝐾(𝑋𝑖 𝑡 − 𝑋𝑗 𝑡 ) + 𝜎 ⋅ 𝜉𝑖 𝑡 ,  𝑖 = 1, … , 𝑁.

White noise
How each agent interacts 
with other agents

How each agent interacts 
with the environment



Interacting particle systems

These models can also have more than one variable. For example, in pedestrian dynamics, 
we can consider a pedestrian’s position and velocity.

𝑑𝑋𝑖 = 𝑉𝑖  𝑑𝑡, 
𝑑𝑉𝑖 = 𝐹 𝑋𝑖 𝑑𝑡 + 𝐺 𝑋1, … , 𝑋𝑁, 𝑉1, … , 𝑉𝑁 𝑑𝑡 + 𝜎𝑑𝐵𝑡

𝑖 .

When 𝐹(𝑥) has information about the environment 
and 𝐺 𝑥1, … , 𝑥𝑁, 𝑣1, … , 𝑣𝑁  includes attraction and 
repulsion forces, this is called the social force model 
and was proposed by Helbing. 

Figure from Moussaid, Helbing, and Theraulaz (2011) PNAS



Interacting particle systems

Similarly, for flocks of birds, we can consider the Cucker-Smale model, which is a system of  
ODEs in 2D and can be written as:

𝑑𝑋𝑖

𝑑𝑡
= 𝑉𝑖 , 

𝑑𝑉𝑖

𝑑𝑡
=

𝜆

𝑁


𝑗=1

𝑁

𝜓 𝑋𝑗 − 𝑋𝑖 (𝑣𝑗 − 𝑣𝑖)

with 𝜓 𝑟 =
1

1+𝑟2 𝛽 .



Mean-field limits

These models are only appropriate for the large population limit of an interacting particle 
system. They are usually an equation for a quantity of interest, like the density.

Example 1: The number of people who disagree with something, or the number of people 
infected with a disease.

Example 2: Large groups of pedestrians (crowds) moving in 
a shared space (e.g. a corridor). When modelling two groups,
we sometimes observe lane formation.

Figure from Smithsonian Magazine.



Mean-field limits

The most common thing to do for mean-field limits, is to consider the empirical density of 
the particles. This is given by

𝜌𝑁 𝑥, 𝑡 =
1

𝑁


𝑖=1

𝑁

𝛿(𝑥 − 𝑋𝑖(𝑡)) .

This function approximates the probability of finding a particle at the position 𝑥 at time 𝑡. 
Plugging this into the equation, taking 𝑁 → ∞, and doing some analysis, we can obtain a 
partial differential equation, called the Fokker-Planck equation for the density 𝜌(𝑥, 𝑡):

𝜕𝜌

𝜕𝑡
=

𝜎2

2

𝜕2𝜌

𝜕𝑥2 −
𝜕

𝜕𝑥
𝜌 𝑥, 𝑡 𝑉 𝑥 + 𝜌 𝑥, 𝑡 න𝐾 𝑥 − 𝑦 𝜌 𝑦 𝑑𝑦 .

And this can help make predictions on the behaviour of the population.

Recall that 
𝑑𝑋𝑖(𝑡)

𝑑𝑡
= 𝑉 𝑋𝑖(𝑡) +

1

𝑁
σ𝑗≠𝑖 

𝑁 𝐾(𝑋𝑖 𝑡 − 𝑋𝑗 𝑡 ) + 𝜎 ⋅ 𝜉𝑖 𝑡



For a simple SDE model for the trajectories,
𝑑𝑋𝑖 𝑡 = 𝐹 𝜌 𝑋𝑡 𝑑𝑡 + 2Σ𝑑𝐵𝑖 𝑡 ,

the Fokker-Planck equation is
𝜕𝜌

𝜕𝑡
= ∇ ⋅ Σ∇𝜌 + 𝜌𝐹(𝜌 ).

• We can use it to predict the long time behaviour 
of crowds because we can find steady states. 

• We can use trajectories from experiments to 
estimate the maximum speed of pedestrians.

• We can also do this for irregular domains and 
we are working on making our models more 
general.

Example: Pedestrian dynamics
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Putting some of these things together 
using scaling limits

(example: opinion dynamics)



Agent-based model

Now we can look at an example with more detail. The algorithm is as follows:

1. Choose two individuals 𝑖 and 𝑗 uniformly at random with replacement. 

2. They interact with probability 𝑝𝑖𝑗(𝑥), with person 𝑖 updating their opinion according to:

3. Repeating until time 𝑇 is reached.



Markov Processes

This is a Markov process, which means the next state of the system only depends on the 
current state, i.e., the system has no memory.

To simulate this process, we simply need to define 𝜇ℎ and 𝑝𝑖𝑗 𝑥 .

We define 𝜇ℎ = 𝑁ℎ, and  𝑝𝑖𝑗 𝑥 = 𝜙( 𝑥𝑗 − 𝑥𝑖 ), where 𝜙 𝑟  is the interaction function. 

Common choices include a bounded confidence function:

𝜙 𝑥𝑗 − 𝑥𝑖 =  ൝
1,  𝑖𝑓 𝑥𝑗 − 𝑥𝑖 ≤ 𝑅,

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

“When will you be done?” 
-1

“Great talk!”
1



Convergence to an ODE or SDE model

Under the right conditions (𝜇ℎ = 𝑁ℎ), it can be shown that this agent-based model 
converges to an ODE model, known as the Hegselmann-Krause model. 

This model looks like

𝑑𝑥𝑖

𝑑𝑡
=

1

𝑁


𝑗=1

𝑁

𝜙 𝑥𝑗 − 𝑥𝑖 𝑥𝑗 − 𝑥𝑖 ,

And it is easy to see that 𝜙( 𝑥 ) can measure:
• The attention you give to someone’s opinion
• How much an opinion influences you
• How much discomfort an opinion creates
• A mix of these effects
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Large population limit

Some people do research on opinion dynamics in the mean-field limit. There are a few 
versions of the model, but a recent one would consider a PDE for the probability of 
someone having opinion 𝑥 at time 𝑡 (assuming the HK model has a noise term):

𝜕𝜌

𝜕𝑡
=

𝜕

𝜕𝑥
𝜌 𝑥, 𝑡 න 𝑥 − 𝑦 𝜌 𝑦, 𝑡 𝜙 𝑥 − 𝑦  𝑑𝑦 .

Figure from Goddard et al (2022), “Noisy bounded confidence models for opinion dynamics”



What else can we do?

A more realistic (and very interesting!) thing to do is to 
add a network to the model.
This introduces relationships between different agents. 
• We use graph theory to modify the equations.
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What else can we do?

A more realistic (and very interesting!) thing to do is to 
add a network to the model.
This introduces relationships between different agents. 
• We use graph theory to modify the equations.
• We can study how different networks and different 

interaction radius affect the dynamics.
• We can also make the networks change over time   

(for example, using friend of a friend dynamics)



• Collective dynamics is a very rich area of mathematics 
with lots of applications, including in physics, 
engineering, biology, or the life and social sciences.

• Modelling pedestrian dynamics uses tools from 
several areas, mainly dynamical systems, but including 
ODEs, PDEs, Markov processes. 

• To analyse these models, we use tools from analysis, 
probability, and dynamical systems

• There is also a lot of work on controlling these models 
(e.g. reaching consensus on the same opinion, birds 
flying in the same direction, evacuating a room).

Some take-home 
messages



You can find out more about me and my research on my website 

and social media:

https://warwick.ac.uk/fac/sci/maths/people/staff/gomes/

Thank you for your 
attention!

Any questions?
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